Tagged: Emerging Technologies

IEEE ETR 2018, Emerging Technologies Reliability Roundtable – Human Factors Session (2)


Following up on my last post about IEEE ERT 2018, here are a couple of charts for my “discussion brief,” which include a Human-Machine-System Capability Mapping chart (above) and concept illustrations of the Experiential Decision Support System (below.)  The charts’ text conveys context setting remarks, which I am also providing here.


Slide1


The goal of furthering machine intelligence is to make humans more able and smarter: the opposite engineering approach typically becomes a source of self-defeating technical myopia waiting to happen and missed opportunities. This simple mapping exercise can be customized to assess and roadmap capability levels.

The more sophisticated automation becomes, the more obvious the criticality of the human factor in both consumer and enterprise environments… rather than less. And, in any case, customer acceptance and adoption criteria remain Quality’s litmus test for emerging technologies.

Digitalization is fostering (a) XaaS,  (b) Self-Service, (c) the Shared Economy and the (d) Maker Movement. All elevate human involvement and drive the push for opening and democratizing technologies. These make (e) citizen science and citizen developers shape the next generation prosumers at mass market scale.

Digital Transformation initiatives embracing the above allow (f) nimbler enterprise teams to operate at far greater scale, scope and speed, and shift focus from routine operations to dynamic value creation coupled with extreme efficiencies.

This entails (g) interdisciplinary workstyles and collaborative organizational behaviors that include (h) customer co-creation models. In this new context, humans remain (i) the ultimate critical element in system reliability and safety. Left shifting Quality by Design (QbD) prioritizes Human-Centered-Design tools and processes to deliver high performance workforce automation systems.


Slide2


Cost-effective Lean Ops systems intertwine analytics, automation, programmability and flexible systems integration. All optimized for dynamic behaviors given Soft System’s perpetual motion. This means designing “for-ever” rapid and seamless reconfigurability instead of just engineering “day 1” implementations.

Operational Excellence dictates system-wide as well as subsystem level visualization, and a combination of centralized & distributed closed loop controls under user friendly operational modes. Cognitive models involve Situational Awareness (SA,) Sense Making (SM,) Root Cause Analysis (RCA,) Scenario Planning (SP,) and ROA (Real Options Analysis.)

The Experiential element is not just about programming known rules and policies but, most importantly, it grows by assimilating iterative learning in the context of cyclical automation: routine decisions and manual operations can be streamlined and collapsed, then switching to “exception” based management for that particular event.

Productivity calls for streamlining operations so that (a) waste can be eliminated & prevented, and (b) value based tasks can be performed effortlessly, in less steps, at speed & without error. High performance behaviors and sustainable competitiveness also call for the ability to (c) experiment and create new capabilities, as well as leveraging (d) process mining for customer journeys & value stream mapping (CJM & VSM) to continuously optimize them and guarantee service levels.

Service Operations Centers (SOC) should be equipped with Experiential Decision Support Systems (DSS) featuring (d) collaborative filtering, (e) actionable data stories conveying hindsight, insight & foresight and (f) adaptive cybernetics. Advanced visualization for both (f) intuitive & highly abstracted infographics and (g) scientific views is of the essence.

Quality is best addressed as a human experience, which determines (d) meaning and, therefore, the degree to which a system is lean vs. over-engineered or subpar (both being defective and carrying obvious and hidden costs.) A new take on QbD for Soft Systems, which are inherently fluid by definition, emphasizes acceptance testing probing for: usefulness & utility, usability & affectivity, consumability & serviceability and safety thru use cases and lifecycle events.

 

Gearing up for Informa’s Back End of Innovation (BEI) 2016


“A great idea is only the beginning. The Back End of Innovation provides a strategic road map to successful commercialization. Learn how to bring new products to market and commercialize them for maximum impact on the bottom line.  Uncover new ways to solve problems we all encounter in today’s dynamic business world.” 

Back End of Innovation #BEICONF


M2184_Back_banner_728x90_8-29-16_v1


image

I am working on the talk that I will deliver at Back End of Innovation 2016 and just came across BEI’s banner on prominent sites, such as CNN’s Innovation section (left screenshot).

The organizers have made available a discount code, which I can share if you were interested in attending. If so, feel free to send me a message on LinkedIn.

The conference’s agenda features speakers from 3M, Cisco, Coca-Cola, Fidelity, Johnson & Johnson, Keurig, Pepsi, Vodafone and Xerox among others and I will be there proudly representing Nokia.

My talk’s title is “Lean Ops Innovation: Dynamic Service Delivery,” which is scheduled on November 17 at 11:30. Here is the abstract:


M2184_Back_banner_300x250_8-29-16_v1“Network Operators in the telecommunications industry operate complex sets of technologies and environments. This sector’s future relies on furthering software defined systems supporting the next wave of pervasive digital services, which all of us come to rely on in our day-to-day lives.

Nokia’s Applications & Analytics (A&A) team has evolved and redefined Lean principles to intertwine advanced analytics, automation, programmability and human factors engineering, the four pillars of a new LeanOps’ framework. The outcome is effective service delivery enabled by highly efficient systems that remain nimble and agile at any scale and at any point in the life-cycle. 


Join Jose for this session to learn:

  • A new Lean Ops framework intertwining analytics, automation, programmability and human factors.
  • How to effectively interweave Design Thinking, Lean, DevOps and Agile to deliver breakthrough innovation.
  • Unlocking the value of Human Factors Engineering in the cloud age and, therefore, expanding the human possibilities of technology.”

imageEarlier in the year I gave a talk at IEEE Communications Quality & Reliability – CQR 2016 also on Nokia’s Lean Ops.

Back then, my focus was HCI, Human-Computer-Interaction and operational efficiencies. As an example, immersive user interfaces taking advantage of 3D data visualization coupled with autonomation and assisted automation, as well as continuous optimization lead to effective decision support systems (DSS) that mitigate human error and elevate value based tasks.

That was discussed in the context of the kind of complex operational environments experienced in the telecommunications industry by network operators. As shared above, my presentation at BEI will focus on the underlying construct instead.


This is my “75 word” bio for this event: “Jose is a Design Director at Nokia’s Applications & Analytics Group. His 15+ years of experience feature leadership responsibilities in strategy, product management, R&D, and marketing. Jose worked with Bell Labs and holds three patents. He is a Member of the Advisory Board at MIT IDSS and is the recipient of an MBA from Chicago’s DePaul University as a Honeywell Europe’s Be Brilliant Scholar. Jose holds a postgraduate degree in Human Factors Engineering from BarcelonaTech.”


This is the second time that I’m featured as part of BEI’s Speaker Faculty and I would like to take this chance to thank the team at Informa for their kind invitation.

I will be happy to meet at BEI and hope to see you there : )

Innovation Management Essentials: Impactful Demos


“The Mother of All Demos is a name given retrospectively to Douglas Englbart’s December 9, 1968 […] The live demonstration featured the introduction of a complete computer hardware and software system called the oN-Line System or more commonly, NLS. The 90-minute presentation essentially demonstrated almost all the fundamental elements of modern personal computing: windows, hypertext, graphics, efficient navigation and command input, video conferencing, the computer mouse, word processing, dynamic file linking, revisions control, and a collaborative real-time editor (collaborative work). Engelbart’s presentation was the first to publicly demonstrate all these elements in a single system. The demonstration was highly influential and spawned similar projects at Xerox PARC in the early 1970s. The underlying technologies influenced both the Apple Macintosh and Microsoft Windows graphical user interface operating systems in the 1980s and 1990s.”
The Mother of All Demos, Wikipedia.


image


Compelling demonstrations can make all the difference when introducing emerging technologies. There is no slideware or paper substitute for the kind of revelations, quality insights, and lasting emotions that we all get when experiencing things live and first hand. On the research side, interactive demonstrations have become invaluable tools that expose and test concepts. Moreover, they prompt invaluable feedback by questioning, validating, unveiling unsuspected items as well as winning hearts and minds to further advance a cause.

Those are some of the reasons why I prioritize demo development and my research process involves activities such as field trips and ethnographic insights captured in environments like the Museum of Science and Industry (MSI) in Chicago and open-door showcases at renowned institutions like Fermilab. Successful science exhibits make complex topics approachable and engaging. They are carefully designed with craftsmanship pride to be perceived as astute, immersive and to appeal to our brain’s intuition and intellect.


The above graphic features quotes from Albert Einstein and Nicholas Negroponte on the left, coupled with Salvador Dalí and Arthur C. Clarke on the right.  I created that poster’s first version a few years ago and became my reference framework for prototyping and demonstration since. The photographs are courtesy of Wikipedia. Here are further insights on what these quotes mean to me:


1.- DEMO OR DIE – The introduction of inventions and diffusion of innovations relies on effectively conveying clear and concise value. Interacting with engaging demonstrations can be best supported by well thought out whiteboarding sessions. This communication strategy works best when allowing dynamic conversations instead of long agendas packed with presentation monologues. Most people can talk about the many times when they were either overwhelmed, underwhelmed or just bored to death by slideware… and became suspicious of hype. Note that we all deal with an unfavorable Signal-to-Noise (S/N) ratio in today’s information rich environment and, therefore, compete for customers and/or users’ undivided attention. Once again, memorable hands-on demonstrations can make all the difference.


2.- GROW TO LOOK LIKE THE PORTRAIT – High tech is a fast paced industry. One can be left wondering if the technology, toolset, application and/or overall system being discussed will grow and scale as needed beyond day one. There can also be concerns around maturity levels, roadmapping options and future proofing when working with emerging technologies. Demos can be used to convey a tangible vision based on attainable end-goals. They can also be used for what-if-analysis, sunny and rainy day scenarios (which can include full lifecycle and stress tests) and plot plausible journeys to go from A to B and any steps in between. Helping everyone come to terms with what lays ahead is key to defining product strategies and planning decisions “to grow to look like the portrait.”


3.- EXPLAIN IT SIMPLY – Apparently unavoidable jargon and well intended technical kumbaya can become easily entangled. Complex explanations suffer from information overload. Convoluted narratives pleasing the presenter’s ego can make unclear what specific problem or pain point he/she solving, and what the sought after benefits and priorities are. When “less is more” it definitely pays to define a vantage point, zoom out, distill fundamentals and synthesize the essence. Knowing your audience and getting the job done in the clearest and most effective terms possible means striking a balance and staying away from oversimplifying or complicating matters. This is an iterative exercise that often demands more time, effort and reviews than the usual information dump. We also need to be able to step-zoom to deliver the next level of detail and to conduct deep dives… without incurring information overload. Humanizing technology, storytelling techniques and ease of information visualization are key to developing a coherent narrative.


“The meaning of a communication is defined by the Change and Affect it creates for the audience. Stories are concerned with transformation. In stories something Changes to create an emotion […] The Change has to resonate with the Audience to generate an Affect; a feeling, a reaction or an insight […] We shall consider these two defining characteristics of narrative to clarify the purpose of any communication […] Change and Affect create meaning. – “Crackle and Fizz. Essential Communication and Pitching Skills for Scientists.” – Caroline van den Brul. Imperial College Press.


image


4..- IT’S MAGIC – This is all about the so called X-FACTOR: an unsuspected quality making something be different and special in unequivocal terms. To be more precise, the X-FACTOR’s experience
can be broken down as follows:


  • SURPRISE FACTOR – this relies on managing perceptions and the discovery process, the tipping point being delivered by a timely and unsuspected clever twist and a defining punch line – the “aha” moment.
  • WOW FACTOR – high impact, impressive, awe-inspiring outcome, benefits and results that can be easily understood and embraced – the “I didn’t know we could do that” and “I want to know more” moment.
  • COOL FACTOR – elegant sophistication and grace, clear object of desire – the “I want that” moment, this being most demos’ ultimate Call-To-Action (CTA.)

The art and science behind the above is known as “affective design.” Techniques such as perceptual learning and emotional intelligence in design (emotional design in short) are applied in Human-Computer-Interaction (HCI) to foster pleasant ease of use, drive further engagement and productive usage in the process. Widespread digitalization and the advent of wearables make HCI commonplace, which is influencing product design.


image


The above is a demo’s “full disclosure” chart, which breaks down what’s real and what’s not. This is needed because vaporware can be an issue of concern.

1.- PRIOR ART – In the above example, a given percentage of the demonstration system involved known technologies, some from third party partners.

2.- STATE OF THE ART – The greatest and latest features, cutting edge delivered by technologies that are available today.

3.- FUTURE ART – A sneak preview of new features and capabilities that are planned, undergoing development and/or committed, but not yet available.

4.- ART OF THE POSSIBLE – Proof of Concept illustrating experimentation results and potential, bleeding edge capabilities that are not yet committed.

By the way, vaporware is the result of positioning 3 and 4 as part of 2. Avoiding unpleasant misunderstands prompts the need for disclosing these four different maturity levels. Note that one graphic applies to a comprehensive demonstration system encompassing those four aspects and their relative weight.


One other thought, there is a difference between incremental and disruptive innovation. The first delivers improved qualities such as better performance in A/B comparison testing as an example, “A” being prior art and “B” state of the art. Most would agree on defining disruptive innovations as game changers which deliver unique capabilities that clearly supersede legacy and conventional systems. That alone renders “A” obsolete. A/B comparison testing leads to discussions on the difference between Present Mode of Operations (PMO) and Future Mode of Operations (FMO.)


“Humanists must be educated with a deep appreciation of modern science. Scientists and engineers must be steeped in humanistic learning. And all learning must be linked with a broad concern for the complex effects of technology on our evolving culture.” – Jerome B. Wiesner.